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ABSTRACT

\

. ‘¥;e existence of ergodic orbits in magnetostatic simulations of
strong ion rings is demonstrated. For nonlinear 2D3V simulations with
axisymmetry the principal manifestation of such orbits is an eventual
violation of left-right mirror syﬁmefry in cases where such symmetry
would normally be expected, due to the exponential divergence of
Pheighboring® mirror image trajectories. Linearized simuiations, in
effect, compute the first order separation of orbits which are displaced
from each other by an infinitesimgl vector for all time. When a
linearized code is applied to o problem invelving ergodic orbits, the
single—particie growth can be faster than that associafeélwifh the
collective modes of interest, rendering the simulation invalid. This
may severely (imit the class of problems for which linearized simuiation

is applicable. Similar effects are expected in simulations of other

systems, including field-reversed mirror eguilibria with large nominal
gyroradii.
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I. INTRODUCTION -

The term “ergodic” is applied to orbits which, loosely speaking,
sweep out @ nonzero volume of the approprigte phase space. Nonergodic
orbits are constrained by an additional constant of the motion to lie on
a lower—dimensiona! surface in this space, and so cannot sweep out a
finite volume. Thick ion rings, with aspect ratios of order unity, have
been found to include a fraction of ergodic single—particle orbits for
moderate values of the field reversal parameter [1]. Some field
reversed mirror plasmas may also entail ergodic orbits [1,2]. These
configurations are in contrast with infinitesimaliy—thin "bicycle~tire"
rings for which the poloida! anguiar momentum provides a constant of the
motion for all particles, with axiaily—infinite layers for which the
axial anguiar momentum is conserved, and with those mirror plasmas in
which thée magnetic moment is an adiabatic invariant. Furthermore,
finite—aspect-ratio bicycle~tire rings and noninfinite long layer
equilibria, and even certain modei thick ion ring equilibria [3], may
also contain no ergoaic orbits,

One aspect of ergodic—orbit equilibria is of particular concern to
simulation models in general and |inearized simulations in particular,
This is their property of "stochasticity”, whereby neighboring
trajectories diverge from each other exponenticily with time, at lecs!

when viewed on g *‘imescale long compared with the system’'s
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characteristic timescale (for ion rings this is the self field betatron
timescaie). Strictly speaking, stochasticity (in the above sense) is
always present when ergodicity is present, but the converse is not true;
however, the two terms will be used interchangeably in this discussion.
The RINGHYBRID code [4] is o linearized hybrid code which assumes a
nonlinear 203V magnetostatic equilibrium. It models the evolution of
linearized nonaxisymmetric (3D) perturbations about this equilibrium.
Using this code, we have observed, and will present, two manifestations
of orbital stochasticity. The first }s evident in the zero order motion
of éarticles in an ion ring, appearing as an eventual violation of
mirror symmetry about the plane z = L/2, and is probably not of serious
consequence. We confirm the existence of both ergodic and nonergodic
zero order orbits by means of surface of section plots. The second
manifestation is a ragged exponential growth of the first-order
separation of the displaced and undisplaced particles. Since this
growth can be rapid, it con easily mask the behavior of the the
collective modes which are the real objects of study in |inearized

simufation, thereby rendering the simulation invalid.
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IT. EFFECTS UPON THE ZERO ORDER SIMULATION

A. Observation of Ergodicity

The first manifestotion of stochasticity is evident in the zero
order particle orbits. Particles are injected over ¢ number of
timesteps to build up an approximate equilibrium possessing mirror
symmetry about the plane z = L/2. That is, for each particle with
phase—-space location (r,,z,.vr1.val.vz1) there is another particle at
(rge -.. ) = (r,.L—z,,vr1,v91,—vz‘)‘ Self-consistant fie!ds are

calculated using the equation

VXV XA=J,8 - 04A,

where the last term is used to induce a resistive relaxation toward
equitibrium [5]. After atlowing the equilibrium to "settle down" and
any gross collective oscillations to phase mix out (for perhaps S00
timesteps), fields are "frozen” so that the |inearized simulation
emplioys time—invariant "equilibrium” fieids. In contrast with the
observed behavior of extremely thin bicycle-tire rings wherein
left—-right mirror symmetry obtains throughout the run, in the thicker
rings studied mirror symmetry is seen to persist for o time on the ;rder
of 1000 timesteps, after which it is observed to break down for at leas!
some of the particles. This can be interpreted as folliows: the mirror
image particles are in fact only mirror images to one part in (say) 10'3

- roundoff errors in the computaticn guarantee that no exact mirror
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symmetry can obtain. Thus, except for the axial reflection about L/2,

these two orbits can be considered to be ""neighboring trajectories’.
These diverge exponentiaily in time (with noise superposed), and
eventually the difference between the two orbits (i.s., z‘+zz—L) has
exponentigted from 10713 4o unity, and the orbits become visibly
different.

A specific example is the run "JYA“ (which was re—run as “"JWA" with
different diagnostics). For this run 2400 simulation particles were
employed, the major radius was r,=15, the wall was at r =24, and the
periodicity length L was 24. The radial and axial rms halfwidths were
2.0 and 2.8 respectively (due to finite particle size the effective
halfwidths are somewhat larger). The externai-field cyclotron period
was 40.0, the mean gyration period being increased to 42 by self-field
effects. A nominal betatron period, obtained by integrating over J, {as
in eq. 27 of reference [6]), was 52 timesteps, although axial and radial
betatron periods differ greatly for a ring of this geometry. The field
reversal factor was 18 percent on axis, and 25 percent immediately under
the ring. For this run the convergence criterion for the zero order
field-solver was set to EPS=10"'3, so that the initial symmetry was good
to somewhat fewer than 13 digits, taking error propagation on the mesh
and the actual magnitude of A, into considergtion. The resistive
relaxation term o, was used with a value of .125, and zero order fieids
were "frozen'" at timestep 450.

Snapshots of the ring at timesteps S00 and 2000 are presented in
figs. 1a and b respectively. Asymmetries, especially in those particle

orbits with large axial excursions, are evident in the plots at IT =

2000.
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1a. Particle locations in the r — z plane at timestep 500.
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The second figure shows the orbits of a pair of particles which

were initially mirror images of each other. For each particle r and 2
are plotted as functions of time. Mirror symmetry is seen to obtain
until approximately timestep 1100, at which point the orbits become
visibiy different (much easier to see on a larger plot — on this one the
orbits differ visibly only after another 100 timesteps or so). The
straight vertical lines are the result of the periodic particle boundary
condition being enforced when a particle, passes through z = 0 or z = L.
Note that this pair of particles was selected to illustrate the eventual
breaking of mirror symmetry - not all pairs of particles wouid have
shown this effect.

Using an interactive debugging routine, the quantity z,+z,-L was
printed out at every other timestep. From this printout the growth rate
of the separation of the "neighboring” mirror image orbits could be
calculated. The timestep at which each decade of separation was first

reached was noted:

decade —-11 was first reached at IT = 90

-10 230
-9 296
-8 332
-7 404
-6 616
-5 728
-4 764
-3 872
-2 956
-1 1068.

We thus find o decade time of roughly (1068-90)/i0 »~ 100 timesteps. The
corresponding growth rate is comparabie to the betatron fregquency.

Plots of this quantity for ¢ similar run gre shown in Fig. 5, discussed

deiow.
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2. The orbits of a pair of particles which were initialily a

mirror image pair, selected from run JWA with EPS = 10-13,
“he histories of r and z as functions of time are shown.
Mirror symmetry cbout Z = L/2 is evident until approximately

*imestep 1100,

i l
k-'




To further verify that we are not simpiy observing a code "bug”,

runs were carried out using other vaiues of the zero order fieldsolver
convergence criterion, EPS. Run "JYA" used EPS = 10~''; for this run a
difference was visible (on a large copy of Fig. 3) at about IT = 1075.
This is not much earlier than in JWA, but recall that the growth is
noisy and that absolute precision of the computer is about 14 digits, so
that JWA’s value of EPS probably cannot give much better accuracy then
the less stringent value used in JYA. To see the effect more clearly,
another run, "KAA", was made using EPS = 10”9 (see Fig. 4). For this
run differences between the mirror image particies are visible at
roughly IT = 825. This is cbout 250 timesteps earlier than in run JYA;
since this run had an initial perturbation roughly 100 times as large as
JYA, it would be expected to need two decades, or on the order of 200
timesteps, less growth for the separation to be visible. This appears
to be consistant with the value of 250 observed.

Even though the orbits diverge greatly, energy conservation for
both is excellent since only "rototions” of the veiocity in the magnetic
field are performed. However, since only B and not A, is used to
advance the particle, it is hard to have a reliable measure of how well
the canonical angular momentum is conserved. Using valiues of A, from
which B was calculated by finite differences shows P, conservation to be
valid within 5 or 10 percent, with P, oscillating without any change on
a long timescale. However, this measure is somewhat unreliable, and the
oscillations probably have no rea!l meaning. In runs using a finer grid

and smaller timestep the magnitude of these oscillations was less, dut

code behgvior was similar.
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B. Ergodicity and Confinement

The 2zero order effect eventually leads to a lack of symmetry of the
ring; this is partly due to the small number of particles leading to
fluctuations that only seemingly violate axial momentum conservation
(consider a single particle in a mirror field - its axial momentum is
not conserved). The effect is magnified by the periodic particle
boundary condition; if one of the ex—mirror image paoir of particles
reaches the boundary at z = 0 or L, and the other does not, the center
of mass of the ring shifts to one side or the other.

In addition, a particlie may leave the ring (by entering the "loss
cone') even after it has exhibited a large number of betatron
oscillations within the confines of the ring: such a particle must be
considered an “unconfined particle”. An example is shown below wherein
one particle was unconfined (first reached z = 0 or L) ot timestep 2600,
while its "mirror imoge” was confined until! timestep 8400. The
equilibrium fields of necessity inciude contributions from this class of
particles. Lovelace has shown that exponential rigid rotor equilibria,
for example, contain unconfined orbdits [7], and therefore require
sources gnd sinks of particles at z = = =,

There appears to be a correiation between whether or not a
particte’s orbit is uncoenfined cnd whether or not it is ergodic (as
expected, since both agre cssocic?ea with high ;nergy). but it is not

one—to—one. Thagt is, some cpparentiy confined particles show ergodic




motion — one cannot be sure they are in fact confined without making an

infinitely long run, at least with the usual scheme of injection wherein
random velocities are added to the injected particlies (in a mirror -
symmetric manner). Most recently, a run (KKA) was made wherein no
random velocities were added. In this run eacn group of injected
particles could only self-pinch together, and lose energy due to the
inductive electric field when succeeding groups of particles were
injected. Thus, all particles were necessarily confined (this was !

observed to be the case); nonetheless, the ergodicity - induced f

assymmetry was present in this run. Note that this method of injection i
gave an equilibrium which was not at all like a rigid rotor in that the ;
angular velocity showed high shear.

On theoretical grounds one expects a different relationship between

confinement and stochasticity depending upon whether the particle orbit

encircles the axis (ion ring case) or does not (small-orbit mirror

piasma, most particles). In the former, the level surfaces of the

——

effective potential are closed, so that particles of small enough energy
must be absolutely confined, while in the latter, the surfaces extend to
infinity and confinement normai{ly depends upon the particie pitch angle
[9]. Jumps in the adiabatic invariant u associated with stochasticity

effectively eniarge *he loss cone so that ail! stochastic orbits which do

not encircie the axis cre unconfined and should be excluded from the
equilibrium [2]. However, for the ion-ring case (and for large orbit ‘
field-reversed mirrors as we!l) cur experience suggests that an 1

appreciable number of confined stochastic partictes are generally

present. at feast when egquilibria are formed by injection.




C. System Length and "Unfrozen” Fields

Runs were made using a larger number of cells axially {a larger '
vacuum region on each side of the ring, and a longer periodicity length
- the cell size was kep! constant). Run "JZA'" used 48 cells in z, while

"KBA"” used 96 cells. In genera!, we observed that the longer the

periodicity length, the longer it took for the (same) two test particles

to show assymmetry. Note that assymmetry showed up in the latter run

even though the test pair did not reach the axial boundary during the

run, but took nearly to timestep 2000 to do so, in contrast with the

shorter systems described aobove wherein assymmetry was visible after

e s s el

about 1000 steps. Presumcbiy this change in the rate of growth of

gssymmetry occurs because the shape of the effective potential well is

different for the various system lengths, both due to the boundary

condition on ihe fieldsolver being imposed at different places and due

to the fact that in the axially short runs the particle periodicity

o g——

condition was enforced more often during the setting up of the i
equilibrium fields. We do not anticipate that making the system longer
still would reduce the ergodic behavior to any great degree, since the

36-cei! system is already much longer than the ring, but have not

i
|

verified this conjecture.

For the axially Ionglsysfems, the axial halfwidth of the ring was
observed to increase at long times both more ropidiy and to a larger
value than in the shorter systems (with similar rings but different
“"tanks”). Presumably this is due to ‘he fact that when particles find

their way into the "loss cone' they have a larger distance to travel




before reentering the ring region one axiql period later, cnd so the
halfwidth can grow cppreciably. The growth in axial length is
associated with unconfined (high energy) particles, and so tends to be
present when ergodic orbits are present.

The breacking of mirror symmetry, and the axial halfwidth growth as
well, were present sven in g run wherein the zero order fields were
never ""frozen"; in fact the halfwidth growth was somewhat more
pronounced in this case. We conclude that keeping fields "unfrozen"

does not reduce the effects of ergodic orbits.

D. Implications

We beiieve this loss of symmetry has not been noted previously in
simulations of field-reversed ion rings and mirror plasmas, although it
may have been present in runs of RINGA [10,11] or SUPERLAYER [12].
Normally, smal!l deviations from symmetry (in runs where symmetry would
be expected) are not measured in such simuifations, and in a nonlinear
2D3V code these are the only quantities which grow exponentialiy. Aiso,
“saturation’” of this effect must set in when the amplitude becomes
comparable to the system size, or perhaps more properly to a smaller
"island width” of the ergodic region in the r—z projection of phase
space [2]. Figure 5 shows the quantities .r,~r,, and iz,+z,-Li plotted
as functions of time for g run with L = 96. The last threae decades of

exponential growth, and the "saturcted” state, can be seen. Here
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"saturation” appears to occur when the separction of the orbits is of

order the system size.

The loss of symmetry to zero order probgbiy is not of great
fundamental consequence Dy itseif. One could simuiate onily the region Z
> L/2 for example, enforcing the mirror symmetry for all time, if one

were onty interested in the zero order ring behavior.

III. SURFACES OF SECTION AND ERGODICITY

To confirm that we ore in fact observing both nonergodic ana
ergodic orbits, surface of section plots were generated. These show the
particular values taken by r and F of each particle as the particle
passes through z = L/2. Such plots, and variations using other
variables, have been employed previously to show orbital ergedicity [1].
They depict a "slice” of the phase space through which the particle
trajectory moves. If the particle orbit is to sweep out a nonzero
volume of this space, it must also sweep out! a nonzero area of the
slice. To make the plots, a postprocessor progr a was written. I?
extracted the tracer particie histories of r and z as functions of time
from a printed output file, which was generated by RINGHYBRID and
rearranged using o text editor. The program computed the instants of
time at which z = L/2 was crossed using iinear interpolation on the
history of z. Again using |linear interpolation, the values of r at

these same instants were calcuiated from the r histary. Finaglly, the

17




associated values of F were calculated by ¢ simple finite difference.
While this interpolation scheme is of low order, it appears to be
reasonabl; effective when small timesteps are taken and the histories
are arranged so as to save every point of the trajectory. Furthermore,
it coan be argued that the simpie leapfrog mover used by the code does
not justify o higher—order interpolation scheme, though this point is
not entirely clear.

Illustrated in Fig. 6 are the r oand 2z histories of a nonergodic
particle selected from a run with L = 96, The plot shows the trajectory
over 8000 timesteps, a very long run for the code. In Fig. 7 the
surface of section plot for this particle is shown. Fields were
“frozen” at timestep 450 and every otner timestep was saved in the
history file; the plot shows points taken from the interval between
timesteps 452 and 8000. The piane z = L/2 was crossed 235 times during
this time. Points in this plot are observed to fall on a
crescent-shaped curve, without filiing in the area of the crescent.
There is, however, considerablie raggedness to the piot, which may be
ascribed to the finite timestep and the diagnostic intervai of two. To
demonstrate this, Fig. 8 shows a surface of section for the same
particie using a diagnostic interval of one step and starting from
timestep 451. The curve is seen to be much smoother than that of
Fig. 7.

The orbit of an ergodic particie from the same run is shown in
Fig. 9. The particle is not bound cnd the periodicity condition is
enforced a number of times, the first time being approximately at
timestep 2600. The surface of section plot for this particie is shown

in Fig. 10. DJicgnostics were made every timestep. For this trajectory

*8
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A surface of section plot for the particle of fig. 6, as described in
the text. Diagnostics were performed every other timestep, and ! inear
interpolgtion between these points was used. Note that points fall

on a crescent but do not fill the area enclosed by the crescent.
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Another surface of section plot for the particle of fig. 6., but

with diagnostics performed every timestep.

pattern is evident.
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10. Surface of section ptot for the ergodic particle of fig. 9. The
points fill an annuliar region, and are not confined to the out!ine

of a region as was the case for the particie of figs. 6§ - 8.
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there were 83 crossings of z = L/2. There is evidently a qualitative

difference between this orbit and the previous one, as here the points
do not lie on a smooth curve but appear to fill an annular region of the
plane. The orbit of the particle that was initialized to be the mirror
image of the particle in Fig. 9 is shown in Fig. 11. In contrast with
its "mirror image"”, this particle appears to be bound for the 8000
timesteps illustrated. In fact, g continuation of the run shows this
particle to be unbound, first reaching the end of the system at timestep
8400. It would be surprising were this not the case, as the same
regions of phase space shou!d normally be ocessible to both of a mirror
image pair of ergodic particles. The surfoce of section piot for this
trajectory is shown in Fig. 12; in fact, this ptot and that of Fig. 10
might be superposed to give a clearer picture of the area of the r —

# plane accessible. There were 154 crossings of z = L/2 in this case.
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IV. EFFECTS UPON THE LINEARIZED SIMULATION

A. Observation

The second manifestation of the diverging trajectories is of much
greater fundamental concern. 1In the first order iinearization, we
consider the motion of a “displaced point” P° relative to that of an

unperturbed point P [4]. The vector separation between the two is

denoted as €. Since the points P and P° represent neighboring
trajectories, when orbits are ergodic we can expect the magnitude of &
to increase exponentiglly with time whether or not Eulerian first-order
fields are included in the calculation, since the stochastic growth is
due to particle motion in the inhomogeneous zero order field. This is
in fact the observed behavoir.

Figure 13 shows part of a non—-ergodic particle orbit (r and z
versus time) selected from a run with the parameters of KBA. This is
the same particle plotted in Fig. 68; timesteps 2000 to 4000 are shown
here in detail. For this particle, time histories of the magnitudes of
the r, 8, and z components of & are plotted in Fig. 14. The initial
excitation was implemented by giving cll| partictes a positive first
order axial velocity é at timestep 500, and no Eulerian first-order
fields were included in the calculation. All components of £ are seen
to oscillgte steadily. This may be contrasted with the behavior of the

ergodic particie of Fig. 9, part of the orbit of which is shown in

; grecter detail in Fig. 15. As seen in Fig. 16, all components of & grow
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14. Time histories of the magnitudes of the r, 8, and z components of

£ for the nonergodic particie of figs. 6 — 8 and 13.
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15. Expanded r and z histories for the ergodic particle of figs. 9 end 10.




noisily. Figure 17 shows the time histories of the components of the
mean £ obtained by averaging over all! particles. The mean £, shows
stable oscillation at first, as would be expected without any first
order field response to drive kink modes etc., but soon the ragged
growth characterizing the singie-particle modes takes over. The r and @
mean componenfs'are initially zero due to the symmetry of the first
order initialization. As symmetry breaks down they grow rapidly to a
level comparable to that of the z component, then grow at the same
(slower) rate as the latter. This Is because the three components of &
are mutually coupled for each particle, as seen in the previous figure.
The growth is even faster in runs with a shorter periodicity length L.
When the term v,X(£:V)B, in the linearized equation of motion is
delested, the first order motion is observed to become stable. To
understand this lack of growth note that, using the linearized equation

of motion,

d/dt[(vq+2)?] = 2&-[voX(£-V)B,],

so thot & cannot grow indefinitely when the right hand side is zero.
This term is responsible for making the orbit of P° a neighboring orbit
to that of P, and not an identical orbit as when the term is omitted.
Because of the relctionship between high energy (large excursion)
and ergodicity, an oft;mpf was made to eliminagte the large—excursion
particles by placing "sticky" walls at Z = 6 and 18, in @ run with
L =24. While 400 of the 2400 particles were removed, stochastic growth
of £ was still present, and the maximum growth rate was only slightly

less than in the comparable run made without the sticky walls, See also
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the discussion of run KKA in the section above on ergodicity and

confinement.

8. Implications

This type of dynamical instability is quite distinct from the
collective plasma effects we wish to examine. In g true Viasov plasmac

with an infinite number of particles, the random phases of the growing

dispiacements £ for all particies wouid be expected to cance!l out in the
mean, and no gross plasma moments would be affected. However, in a

simulation plasma with perhaps one to ten thousand particles, this may &
not be the case. Since different particles have different growth rates,
the single—particle growth of one or a few particles comes tc dominate,

and when we examine moments such as mean £, first order currents,

.

etc. the only thing that appecors is the effect of this one or few
particles. Uniess the collective modes have a higher growth rate than
the fastest growing single particle mode, only the lgtter can be seen,

and regardiess of background piosma parameters the growth will appear

the same.

If one attemts to minimize the stochastic growth by increasing the

number of particles, the reduction is small since the canceiiction

shouid improve only as the square root of the number of particles.
‘ Attempts to reduce the mean rate of growth by empl!oying up to 9600
particles were unsuccessful, possibly because when more particltes were

used some fe!l!l on orbits with even higher associcted growth rates.
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Presumably canceilation would occur if a far greater number of particles
were employed.

J.M. Finn has observed, in computer experiments using model
potentials, o strong model dependence of the argodic properties. In two
of three models, including one self-consistant model, he observes
predominantly ergodic behavior, while in the last (nonself-consistant)
modei he observes only limited ergodic behavior. D. A. Larrabee and
R. V. Lovelace, using o different self-consistant model not described in
detgil, find ergodic orbits to be present only in one “highly
compressed” ring [3]. By suitable choice of model it may thus be
possible to find equilibria with only weak singie~particle growth, or
none at all. This may present a serious restriction on the class of
problems which can be run. Discrete representations of numerically
calculated Viasov equilibria may prove useful., since equilibria formed
by injection, as in RINGHYBRID, are rather likely to encompass ergodic
orbits. However, even some equilibria formed by injection can be
expected to prove usable; recent results sugges! that in one fully field
reversed ring with an aspect ratio of order 4:1 the ergodic growth is
slow enough that meoningful conclusions about collective behavior can be
drawn from the results.

It may be possible to treat problems involving ergodic orbits by
other means. Perhaps the fastest-growing particles can be removed from
the computation artificially, at some risk of affecting the physics.
This may be most reasonabie for mirror plasmas where only a small
fraction of the particles are both cxis—encircling and srgodic. It may
be pos;ible to reconstruct the distribution function t!', and possibly

f9, periodicaily in a moment-conserving manner, os a possible means of
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smoothing out the single~particle effects [13]. Finally, it may be
possible to obtain results on collective behavior by somehow
“subtracting” a run made without gny first-order field response, such as
the run illustrated, from one with full plasma response. The probiem
with the lgtter approach is that any errors in the subtraction also grow
exponentially, and it is probably impossible to get amplitude and phase

of the single particle modes in the two runs aligned with each other.

V. CONCLUSIONS

In summary, the effects of ergodic single-particle orbits have been

‘observed in a series of computer simulctions of strong ion rings. It is

anticipated that they are also present in a wide ciass of systems such
as field~reveresed mirror plasmas with targe nominal gyroradius.
Nonlinear 2D3V codes are able to treat problems involving ergodic orbits
with only minor difficulties. These include an eventual violation of
mirror symmetry and small fluctuations in @ normally conserved momentum.
Linearized codes, however, are more severely gffected by ‘he presence of
ergodic orbits. The exponential growth of the displacement between
unperturbed and perturbed trajectories can be sufficiently rapid as to
mask the collective modes which are the true objects of study. Fully
non!inear 3-D codes may also experience difficulties w~hen ergedic orbits
are proscnt: the mode being studied may saturate at a lower level than

that associated with the stochastic growth, At presen! we know of no
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way to eliminate the undesirable single—particle modes when ergodic
orbits are present; however, it is possible that by careful choice and

implementation of equilibria, linearized simulations wiil still prove

applicable to a wide ciass of probiems.
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